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1.0 INTRODUCTION

In recent years some important developments have occurred in the theory of two-
dimensional laminar boundary-layer flows. The crucial discovery, due to van
2 Dommelen and Shenl, is that the solution of the boundary-layer equations with
boundary conditions corresponding to a circular cylinder started impulsively
from rest develops a singularity. This with u_ denoting the velocity of the
cylinder and a its radius, occurs at a time u_t/a = 3.0 and at an angular
distance 8 = 111° from the forward stagnation point. At this time the position
of zero skin friction is at © = 106° close to, but not coincident with, the
singularity. This discovery was made by solving the governing boundary-layer
equations in Lagrangian form; subsequently, the existence of the singularity
was confirmed by Cebeci2 using the Eulerian form and by Cowley3 using the
_ method of series truncation. The importance of this result is two-fold.
% First, it is of importance to the fundamental theory of high-Reynolds number
' flows in indicating that an interactive theory is necessary to understand the
evolution of the flow field at a finite time after the motion starts, rather
than only after a long time. Secondly, it is clear that significant changes
will then occur in the flow field and these may be related to the phenomenon
‘ of vortex shedding. The physical processes which take place during the oscil-
L lation of the angle of attack of the airfoil are complicated and depend on a

' large number of parameters4’5. For example, an important characteristic is
a large vortex that is formed near the surface at some stage in the cycle and
causes stall to occur shortly afterwards. The occurrence of the vortex is
probably associated with a breakdown of the unsteady boundary layers.

~—
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The purposes of the present research are to determine the relationship between

7] unsteady separation and singularities in the solution, and to explore the

, possibilities of removing this singularity by interaction of the viscous and
inviscid equations. In this report we describe the work that has been accomp-

. lished under the contract. So far we have examined the evolution of the

(] boundary layer near the nose of an oscillating airfoil and found that, when the

. reduced frequency is of the same order as in the experiments on dynamic stall,

the unsteady boundary layer ceases to behave in a smooth manner just downstream

L .

i of separation and before one cycle has been completed; as with the impulsively
started circular cylinder, this irregular behavior signals the onset of a
~ singularity in the solutfon of the boundary-layer equatipns,v'Iggrgggggjgggwqm -
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solution procedures used in the present study are described in Sections 2 and
3, respectively, and the results are presented and discussed in Section 4.

2.0 EQUATIONS, INITIAL AND BOUNDARY CONDITIONS

The boundary-layer equations and their boundary conditions for unsteady
incompressible laminar flows on oscillating airfoils can be written as

e (2.1)
u au 2
ou au ou _ e e o u
u(s,0,t) = 0, v(s,0,t) =0, u(s,ng,t) = ug(s,t) (2.3)

The solution of boundary-layer equations requires that the external velocity
distribution be specified. Since the present effort is directed toward solu-
tions near the leading edge of the airfoil, a local model for the potential
flow has been chosen in the place of a full-potential-flow code. We consider
an ellipse with major axis 2a and minor axis 2at(t<<1) at an angle of

attack a(t). The surface of the body is defined by

X = -3aC088, Y=ar sine -r <O <n

and with these definitions and to a first approximation, the external velocity
around the ellipse can be deduced from inviscid flow theory to be

£+,

ug(s,t) = (2.4)

1 + gz

Here EZ(s,t) denotes a dimensionless velocity, u:/qn(l + t), the parameter

£ denotes a dimensionless distance related to the x- and y-coordinates of the
ellipse by x = 1/2 arzc, ys arzz measured from the nose, and Eo (za/<)
represents a dimensionless angle of attack. The parameter E is also related
to the surface distance s by

£
s = [[as )24

(2.5)




We next define a dimensionless distance n by

1/2
R(Y + 1) n
ns= [—2_‘2" = (2.6a)
2t°(1 + £7) a
with R = 2au,/v, and a dimensionless stream function f by
FEamt) = [(1 + vau 2] Y2(s,n,t) (2.6b)

Introducing these relations together with Eq. (2.5) into Eqs. (2.1) and {2.2),
it can be shown that the continuity and momentum equations can be written as

I au,
" 3 12 2 2,3/2 v 3 o, of
f*' o+ ;—:—Ei-f +(1+¢ )ue 35 + (1 +85%) at1 = f 3 f 3%
2, af’

+(]+E)—f— (2.7)
Here primes denote differentiation with respect to n and ty = (1 + r)ump/arz.

The boundary conditions for f and f' become

f=f"=0 at n=0,

2)1/2

+(1+¢ U(E,t) as n+o (2.8)

The definition of Eé(;.tT) is given by

u (z t) E+E, (t )

ug(Est) = U, (r 3T T
V1 E

To complete the formulation of the problem, initial conditions must be speci-
fied in the (t,n) plane at some s = So0 either on the Tower or upper surface
of the airfoil as well as initial conditions in the plane on both surfaces of
the airfoil. In the latter case, if we assume that steady-flow conditions
prevail at t = 0, then the initial conditions in the (s,n)-plane can easily be
generated for both surfaces by solving the governing equations for steady flow,
which in this case, are given by Eq. (2.1) and by

(2.9)

du 2
U au e au
u-b—s-"Vﬁ.uers-—"‘V-a—':z' (2-]0)
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There is no problem with the initial conditions for Eqs. (2.1) and (2.10) since
the calculations start at the stagnation point.

The generation of the initial conditions in the (t,n)-plane are not so
straightforward to obtain as is discussed in Section 3.1.

3.0 SOLUTION PROCEDURE

The solution procedure for the set of equations and boundary and initial con-
ditions given in Section 2 can be achieved in two parts concerned, respec-
tively, with the leading edge and downstream region. These two parts are
considered in the following two subsections. In both cases the solution
procedure makes use of Keller's box method, which is a two-point finite-
difference scheme extensively used for the solution of ?arabolic partial-
differential equations, as discussed by Bradshaw et al.’.

3.1 Leading-Edge Region

The generation of the initial conditions in the (t,n)-plane at s = So

requires a special numerical procedure. Given, as we are, the complete veloc-
ity profile distribution on the previous time 1ine, there is, in principle, no
difficulty in computing values on the next time line by an explicit method, but
if we wish to avoid the stability problems associated with such a method by
using an implicit method, we are immediately faced with the problem of gener-
ating a starting profile on the new time Tine.

In order to explain the problem further, it is instructive to see what happens
to the stagnation point as a function of time. For this purpose let us
consider Eq. (2.4). If we choose zo(tl) to be of the form zo(l +A sinGt]),
and Tet Ez z u:/qa(l + t), then Eq. (2.4) becomes

E+E(1+A sinﬁt,)

v 1+ Z

g
where i s related to the dimensional frequency by  \ h]ml*-{_?
e’ R

TolE,tq) =

E.Tr-j—-u
+ Tiu,
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Here £o and A denote parameters that need to be specified. Since by

-0

definition Ug = 0 at the stagnation point, its location, Eg, is given by

Eg = <Eo(1 + A sinut) (3.2)

and so the upper and lower surfaces of the airfoil as functions of time are
defined, in particular, by g > Es and § < Es. For example, let us take A = 1,

w =n/4 and plot ES/EO in the (t,E)-plane, as shown in Figure 1 for one cycle
(0 < ty<8).

-2 -1 0 1
&s/éo

Fig. 1. Variation of stagnation point with time for one cycle according to
Eq. (3.2), with w = n/4, A = 1.

When t1 = 2, the stagnation point Es js at -ZEO, when t1 = 6 is at 0, etc. If
gg were fixed, we could assume that u = 0 at ¢ = Eq for all time and all y,
but this is not the case. It is also possible to assume that the stagnation
point is coincident with zero u-velocity for a prescribed time. However, we
should note that the stagnation point given by Eq. (3.2) is based on the van-
ishing of the external velocity. For a time-dependent flow, this does not
necessarily imply that the u-velocity is zero across the layer for a given
g-location and specified time. This point is substantiated by the results
shown in Figure 2 taken from Ref. 8 and obtained with a novel numerical pro-
cedure called the characteristic box scheme. It is also evident from Figure 2
that flow reversals do occur due to the movement of the locus of zero
u-velocity across the layer. This causes numerical instabilities which can be




One phase of the calculations for the oscillating airfoil was carried out by
choosing £, = 1, A = -1/2 and w = 0.1. With these choices the maximum value
of aqps, defined by

T

;? avoided by using either the zig-zag box or the characteristic box finite-

o difference scheme. The details of these numerical schemes have been reported
:ﬁ in Ref. 7 and, with special reference to oscillating airfoils, in Ref. 8.
o

- 3.2 Downstream Region

ﬁ A solution to the leading-edge region, obtained by the procedure of Section

[ 3.1, may be used as initial conditions for the solution of the system of equa-
N tions given by Eqs. (2.7) and (2.8). This can conveniently be done by using
;E Keller's box scheme, which reduces Eq. (2.7) to a first-order system, With f'
" and f* represented by r and v, respectively, we write
~

- f'=r (3.3a)
, r'=v (3.3b)
1 and obtain
Yoy Y1) au
W 4 2 2,= e 2,3/2 °e

-, V' o+ rc+ (1 + €% + (1 +£°
. 1+ €2 e 3T B2

\ ar . of 2, ar
-::; =PF€--VK+(]+E)W{ (3.3¢)
f With this notation, the boundary conditions given by Eq. (2.8) can be written
- as

7

;; fxra=0 at n=0 (3.4)
. re=(1+ zz)l/zie at n=n, (3.5)
Ni The system of Eqs. (3.3) and (3.4) has been solved by the numerical procedure
3 of Ref. 7.
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o 4.0 NATURE OF THE SINGULARITY FOR AN OSCILLATING AIRFOIL
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aeff = Eo(1 + A sinuty) (4.1)

is sufficient to provoke separation with a strong singularity if the boundary
layer were steady. At present o A, w are being varied to examine their
effect on the nature of singularity.

The unsteady flow calculations displayed in Fig. 3 show that the boundary Tayer
eventually separates, the flow remaining smooth., However, just downstream of
separation, it is evident that a singularity develops in the solution in the
neighborhood of § = 2.12 and Gt] = 308.75° and that it is not possible to
continue the solution beyond this time without conceptual changes in the

mathematical and physical formulation of the problem. While this is a satis-
fying conclusion, and may be interpreted as giving theoretical support to

experimental observations of dynamic stall, it should be treated with some
caution. Boundary-layer singularities have been the subject of much contro-
versy in recent years and it is clearly important to make sure that any irreg-
ularities in a computed solution are not creatures of the numerical method
used. We, however, feel confident that the calculations reported here are
accurate and that the singularity is real.

Figure 3a shows that the variation of the displacement thickness

*
walt(liy L (4.2)
is generally smooth except in the neighborhood of £ = 2.12 and for wty =
308.75°, The first sign of irregularity is the steepening of the slope of Y
when Gt] = 300°. A Tocal maximum of ¥* occurs at £ = 2.12 when Gt] =

308.75°. When the same results are plotted for a displacement velocity, (d/dE)
(ug*), (Fig. 3b), we observe that the steepening of the displacement velocity
near £ = 2,12 is dramatic. For example, for wt] = 300°, the peak s at g =
2.125, for @ty = 305°, it is at £ = 2.105, for wt] = 307.5°, it is at § =

2.09 and finally for wt] = 308.75°, the peak moves to £ = 2.08. It should be

noted that the maximum value of displacement velocity moves towards the separation

point with increasing wty; the same behavior will be shown to occur for
the circular cylinder discussed below.
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ﬁ; As shown in Fig. 3c, the wall shear parameter f& shows no signs of irregularity
;ﬂ for wty < 308.75° but a deep minimum in fy occurs near £ = 2.15, i.e. near
- the peak of ¥*.
7
S: It is interesting and useful to compare the results presented in Fig. 3 for an
?‘ oscillating airfoil with those obtained for a circular cylinder started
i; impulsively from rest. This comparison lends support to the accuracy of the
. present calculation method and at the same time enables us to compare the
:i: characteristics of two distinctly different unsteady flows near the singularity
:? location. The circular cylinder problem has been extensively studied as
_,ﬁ reported in Refs. 9 and 10 and the present results shown below are in close

agreement with those of previous authors, but with subtle differences which may
have important implications.

. Figure 4 shows the results obtained by Cebeci? for the circular cylinder

* problem. As in the case of the oscillating airfoil, the flow separates and
. remains smooth up to the separation point. However, just downstream of sepa-
;’ ration with increasing time, a singularity develops in the neighborhood of o
‘% = 112° and t = 3.0 and it was not possible to continue the boundary-layer
calculations beyond this time and angular location. From Fig. 4a we see that

i while the variation of displacement thickness is smooth for values of 8 less
;i than 108°, it begins to steepen dramatically thereafter. The same results are
o plotted in Fig. 4b to demonstrate that, as in Fig. 3b, the displacement veloc-
; ity exhibits a maximum which increases rapidly with time. Again the maximum
L shifts towards the location of separation with increasing time.
;S The results of local skin-friction coefficient calculations in Fig. 4c follow
e similar trends of those obtained for the oscillating airfoil. In both cases,
.- the distributions pass through zero with no signs of irregularity and do not
; exhibit any breakdown before the time corresponding to the singularity.
The very careful calculations of van Dommelen and Shen are reproduced on
! Figures 5 and 6 for displacement thickness and velocity profiles, respectively.
2{ The corresponding displacement thickness results of Cebeci2 together with the
:: new calculations of the velocity profiles are reproduced for comparison
purposes. As can be seen from Fig., 5, the agreement between the sets of calc-
N ulations for three values of t = 2, 2.5 and 2.75 is excellent. The velocity
7.
¢
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“jﬁf profiles of Fig. 6a, which correspond to a time t = 2,75 as in Fig. 5¢c, are
f&- also in excellent agreement for various angular locations. In contrast, the
25 calculated velocity profiles of van Dommelen and shen'! at t = 2.984375 show
x differences from the present results obtained at t = 2,9875. The figure con-
o firms the expected close agreement of the two sets of results at the two
smallest angular locations, but indicates significant differences at the two
N highest values. The trend is different in that the present results show that
L) the location and the magnitude of the maximum negative velocity increases with
{: angular location. Also the tendency for flattening of the velocity profiles
:%E in the vicinity of the singularity is not confirmed by the present results.
3
‘- Figure 7 shows the velocity profiles obtained by Cebeci? for two values of t
= as a function of angular Tocation. It is clear that the magnitude of negative
13ﬁ velocity increases with angular location and suggests that as the singularity
:EZ is approached, the magnitude of the negative velocity will tend to infinity.
-2 Figure 8 allows comparison of the displacement velocities obtained by Cowley®
: i and by the present method for four values of time. We would expect, from the
- previous comparisons that the two sets of results would be in close accord at
{ . Teast for times up to 2.75. The figure shows the expected close agreement

"\ until the maximum value is approached. The discrepancies apparent at higher
values of 0 cannot readily be explained, and it should be noted that the
Tocation and time of singularity occur at different values of 8; the results

) of Cowley and van Dommelen and Shen appear to agree in this respect. The
i:j reasons for these discrepancies are presently under investigation.
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Comparison between thf displacement thickness zaldes obtatned by
van Dommelen and Shen! (circles) and by Cebect¢ (solid 1ine) for the
circular cylinder, (a) t = 2.0, (b) t = 2.5, (c) t = 2,75,

(x 1s in
radians.)
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